
A Comoarison of Ada and C on Sun and microVAX

Intelligent Controls Group
Robot Systems Division

Principle Author: Stephen Lake
Date: February 16,1988

Document number: ICG-#8
Document version: 1.2
Document approval:

Revisions
1. Stephen Leake

20 June 1988
Add timing for Verdix version 1.5.

2. Stephen h a k e
4 August 1988
Correct minor errors

Scope of the Document

Th i s document describes the results of work that compares the suitability of the Ada and C
programming languages for the NASREM robot control system, on VAX and Sun hardware.
Execution speed, portability, and abstraction are considered for each compiler / machine com-
bination.

4 August 1988 1

A Comnarison of Robot Kinematics in Ada and C on Sun and microVAX

Stephen Leake
Intelligent Controls Group

Robot Systems Division
National Bureau of Standards

There are many considerations involved in choosing a language for any large
and long-lived project. Th is study addresses just three issues; execution
speed, portability to different computing hardware, and level of abstraction.
Robot kinematics was chosen as the example application, because i t i s typical
of computations in robotics, and because the algorithms are fairly well known.
The forward and inverse kinematics were implemented on five
compiler/machine pairs: DEC Ada on a pVAX II,DEC C on a pVAX 11,
Verdix Ada on a Sun 3/160, Sun C on a Sun 3/160, and SMACRO (a macro
assembler) on 8086/8087. In summary, Ada was judged better for abstraction,
and neither Ada nor C had any particular advantage for portability. On the
VAX, DEC Ada i s faster than DEC C, while on the Sun ,Sun C i s faster than
Verdix Ada. Sun C i s slightly faster than DEC Ada, butallexecution times,
including SMACRO on the 8086/8087, are within a factor of 2. The Ada
implementation was done in two ways; f i rs t using a more abstract method,
second using a less abstract method. The level of abstraction had a significant
impact on execution speed, as did the various Ada run time checks.

4 August 1988 2

1. Introduction

There are many considerations involved in choosing a language for a large and long-lived
project such as the Flight Telerobot Servicer (FTS) [Purves 871. There will be multiple
programmers, both for the initial effort and during maintenance. The project involves real-
time control of mechanical systems. There are many safety andreliability issues. The system
can be-expected to evolve over time, both in functionality and in the computing hardware i t
runs on.

This study addresses just three issues; execution speed, portability to different computing
hardware, and level of abstraction. Execution speed i s critical in real-time control. Portability
i s necessary both for future growth, and for technology transfer to the commercial market.
Level of abstraction may be defrned in terns of the object oriented programming philosophy
[Booch 861. Th is holds that the structure of the code should be as close to the human view of
the task as possible. The closer the code i s to this goal, the more abstract it is.

As i s well known, execution speed for any particular computer i s highly application
dependent. In this study, the forward and inverse kinematics for the PUMA 760 robot are
used as the test application. This application i s fairly typical of computation tasks in the
PRIM and SERVO levels of NASREM, and to some extent in the World Model [NASREM
871. It i snot representative of computation tasks in the other parts of NASREM, such as
path planning or vision processing. The inverse kinematics i s coded ina relatively low-level
way, for speed. The forward kinematics i s coded in a more high-level way, for two reasons.
First, this serves as an example of high-level prototype code. Typically, we are not as
concerned with speed when prototyping; getting the code to work correctly i s more important.
Secondly, the high-level implementation lets us study the trade-off involved between level of
abstraction and speed.

Execution speed is also compiler and machine dependent. I t i s virtually impossible to
separate the compiler from the machine; the back end of a compiler i s highly machine
dependent. This study involves five compiler/machine pairs: DEC Ada version 1.4 on a
pVAX II,DEC C version 2.3 on a pVAX II, Verdix Ada versions 5.41 and 5.5h on a Sun
3/160, Sun C version 3.2 on a Sun 3/160, and SMACRO on 8086/8087. (SMACRO i s the
NBS-developed language used to write RCS (Real -time Control System), the precursor to
NASREM). The SMACRO code i s included only in the execution timing study, as an
example of what assembler level manual optimization can achieve.

The same programmer (the author) wrote allof the application code, assuring that the
p r o g w i n g style and algorithms are as close as reasonable. Th is i s not to say that they
are identical; each language encourages itsown style. At the most abstract level, the
algorithms are identical (and they produce the same numerical results), but at the lowest
level, the number and order of multiplies and adds i s slightly different among the three
languages, and probably different between the two implementations of Ada and C, due to
optimization differences.

The rest of the paper i s organized as follows. Section 2 presents the application in more
detail, describing the algorithms used. Section 3 presents the Ada and C implementations,
and discusses the level of abstraction, portability, and execution speed for each
implementation. Section 4 summarizes the conclusions.

4 August 1988 3

Commercial equipment i s identified in this paper in order to adequately describe the systems
under test. Inno case does such identification imply recommendation by the National Bureau
of Standards, nor does i t imply that this equipment was necessarily the best for the purpose.

This research has been supported by NASA under Contract S-28176-D.

2. Application description

Th i s section describes the application, and the algorithms used.

In any robot control system, the robot kinematics plays an important role. I t translates
between Cartesian space, where tasks are planned, and joint space, where the robot
actuators are. In a typical application, a trajectory i s generated by producing Cartesian points
at a regular rate (20 to 100 milliseconds), and the inverse kinematics converts the Cartesian
points to joint values at the same rate. The forward kinematics may be used to convert
sensed joint positions to Cartesian positions, usually at the same rate as the inverse
kinematics.

There are many derivations of the kinematics for the PUMA 760 and other robots [Craig 861,
[Paul 813. The algorithm used here for the inverse kinematics i s similar, and will not be
derived in detail. The algorithm for the forward kinematics, however, i s significantly different.

The typical approach to deriving the forward kinematics i s as follows:

1) Define Cartesian frames and joint origins for eachlinkof the robot.

2) Define the transformation matrices for each joint.

3) Multiply out the matrices, and simplify as much as possible.

M y approach i s the same for steps 1and 2, butIdo not do step 3. The expression for the
forward kinematics obtained from step 2 is:

where

0T1= OR1'Pl

'T2= 'R 2 2'P

andiR- andiP- represent pure rotations and pure translations, respectively, from fiameito

frame j,and T represents mixed rotation and translation.
3 J

Instead of trying to simplify the resulting expression,Icode the indicated transform
multiplies. If each transform i s expressed as a homogeneous matrix, there are many zeroes,
which makes the transform multiply very inefficient. However, there are more efficient
representations of transforms. In the application code,Iimplemented four different

4 August 1988 4

I

* +left & result - -
Matrix Matrix Matrix 27 18
Mamx Angle-Frame-Axis Matrix 12 6
Matrix Cartesian Cartesian 9 6
Matrix Distance-Frame-Axis Cartesian 3 0

uaternion Quaternion Quaternion 16
uaternion Angle-Frame-Axis Quaternion 8
uaternion Cartesian Cartesian 39
uaternion Distance-Frame-Axis Cartesian 12

12
4
21
5

Cartesian Cartesian 4 2
Distance-Frame-Axis Cartesian 2 0

Table 1. Operations count for various representations

resentations of rotation, and two of translation, together with the associated multiply
operations.

The four rotation representations are:

4)

TrigFrame-Axis: The sine and cosine of the signed magnitude of rotation, and an
enumeral giving one of the principal axes (X,Y, 2) of a Cartesian frame. The rotation i s
about the indicated axis.

Angle-Frame-Axis: An angle giving the signed magnitude of rotation, and an
enumeral, as in Trig-Frame-Axis.

Quaternion: Four numbers, given by [Cos (en),n Sin (W2) 3, where 8 i s the
magnitude of rotation, and n i s the axis. Quaternions where f i rs t described by Hamilton
[Hamilton 18441, and are also known as Euler parameters [h e 831.

Matrices: The usual 3 by 3 onhonomal matrices.

The two representations of translations are:

1) Cartesian: The usual 3 element Cartesian vector.

2) Distance-Frame-Axis: The signed magnitude of the translation, and an enumeral as in

Note that the traditional homogeneous transformation i s just a combination of an orthonormal
matrix and a Cartesian vector. Obviously, the two rotation representations involving frame
axes cannot represent arbitrary rotations. However, they do represent an important special
case. All six of the rotations involved in the PUMA forward kinematics are about one of the
axes of the previous link’s frame. Th is i s why there are so many zeroes in the matrix
representation. Similarly, the translations are also along the frame axes.

The multiply operations for representations based on the frame axes are much simpler than
for the general case. A summary of the number of operations involved i s given in Table 1. I t

TrigFrame-Axis. The translation i s along the indicated axis.

4 August 1988 5

i s clear that the number of operations can be significantly reduced by using the appropriate
representation. However, they will not be reduced below the number achieved by the
traditional approach, and in fact, my approach usually keeps a few extra. Thus for pure speed,
the traditional approach, involving manual simplification, is better.

However, we are concerned with more than pure speed: abstraction and maintenance play a
role here. Using the frame-axis representations, the code i s more abstract; closer to the
user’s view of the task. When we thinkof thelink transforms for the PUMA robot, we
visualize rotations about the axes of the frames established for eachlink,not the
corresponding matrices or quaternions. The degree to which th is i s important depends on the
language, as we shall discuss in the next section.

Debugging i s certainly simpler; the programmer codes only the six transform multiplies, not
the complex equations resulting from manual simplification. (Of course, the primitive multiply
operations are assumed to be previously debugged). Th is i s more important in prototype
tasks; if a task i s to be repeated as often as the kinematics are, the debugging time i s less
important than speed. However, there will be many prototype tasks in a growing,
experimental system such as the FTS. Even for time-critical tasks, the algorithm can be
proven by writing abstract code, then speeded up by replacing the abstract portions with low-
level code. Then a known working version i s available to help debug the low-level version.

Maintenance i s enhanced, primarily because the code i s more abstract, and therefore easier
to understand and modify. The code i s also more compact; there are fewer statements, and
therefore fewer opportunities for error during maintenance.

In summary, the test application consists of two procedures; the inverse kinematics, coded in
a conventional style, and the forward kinematics, coded in a more abstract, high-level style.
These two procedures are somewhat typical of the types of procedures encountered in the
PRIM and SERVO levels of NASREM. Keep in mind that the forward kinematics could be
more highly optimized, but that i t i s serving as an example of a prototype procedure, where
correctness and abstractness i s more important.

3. Language evaluation

Figures 1 thru 4 show the Ada and C code for the forward and inverse kinematics routines
(only part of the inverse kinematics routine i s shown, due to i t s length). The SMACRO code
i s not shown. The following subsections address the issues of abstraction, portability, and
execution speed. There are no measures for abstraction; a discussion of the issues i s the
best we can do, while recognizing that the discussion i s subjective. Portability i s somewhat
more amenable to measurement; the problems can be documented in terms of compiler error
messages and/or run-time bugs. A comDletely portable application would compile and run
with no bugs, and no editing of any source code (this is, of course, almost never achieved in
practice). If there are bugs or compiler errors, there i s st i l l a question of how “important” the
problem is. Execution speed i s of course fairly easy to measure.

4 August 1988 6

procedure Forward -Kinematics (
Geometry : i n GEOMETRY-RECORD;
J o i n t : i n JOINT-ARRAY:
Rot-Rep : i n Rotations.ROT -REPS;
Pose : i n out Poses.POSE;
Flags : out CONFIG-FLAGS)

-- compute the Car tes ian pose and conf igurat ion flags, given the jo in t
-- angles.

' i s

use Translat ions, Rotat ions, Poses;

Tr ig - 0 : TRIG-PAIR := Sin-Cos (Joint (0)) ; -- used i n computing f l ags

begin
case Rot-Rep i s -- choose r o t a t i o n representat ion
when MATRIX =>

Pose := (To-Matrix (ROTATION' (TRIG-FRAME-AXIS, (Tr ig - 0, 2)) 1,
Ident - Translat ion)

when others =>
Pose := (To-Quaternion (ROTATION' (TRIG-FRAME _AXIS, (Tr ig - 0, 2)) 1,

Ident - Translat i o n 1
end case:

Pose := Pose
* TRANSLATION' (DISTANCE-FFUME-AXIS, (Geometry. Shoulder, Y))
* ROTATION' (ANGLE-FRAME-AXIS, (Jo in t (1), Y))

* TRANSLATION' (DISTANCE-FRAME-AXIS, (Geometry.Upper -Arm, 2))

* ROTATION' (ANGLE-FRAME-AXIS, (Jo in t (2) , Y))
* TRANSLATION' (DISTANCE -FRAME-AXIS, (Geometry.Fore -Am, 2))
* ROTATION' (ANGLE-FRAME-AXIS, (J o i n t 31, Z))

* ROTATION' (ANGLE-FRAME-AXIS, (Joint 4) , Y))

* ROTATION' (ANGLE-FRAME-AXIS, (Joint 5) ' 2)) :

compute f l a g s

end Forward -Kinematics

Figure 1. Ada code for forward kinematics.

4 August 1988 7

POSE-FLAGS forward -kinematics (geometry, in- joints)
GEOMETRY *geometry ;
JOINT-ARRAY in- jo in ts ;/* compute the C a r t e s i a n pose and con f i gu ra t i on flags, * /

/* given the j o i n t angles.* /

au to
a u t o

POSE-FLAGS resul t ;
TRIG-PAIR trig-0; / * used i n computing f l ags * /

trig- 0 = sin-cosd (in- joints [O]) ;

resu l t -pose = pose- times- trig- frame-axis (identgose,
trig-0, 2) ;

resul t .pose = poseglus -distance - frame-axis (resul t .pose,
geometry ->shoulder, Y) ;

resul t .pose = pose-times-angle-frame-axis (resul t .pose,
i n- jo in ts 111, Y) ;

resul t .pose = poseglus - distance - frame- axis (resul t .pose,
geometry ->upper-arm, 2) ;

resul t .pose = pose-times-angle-frame_axis
in- jo in t s 121, Y) ;

resul t .pose - poseglus - distance - frame- ax
geometry ->fore-arm, 2) ;

resul t .pose = pose-times-angle-frame-axis
i n- jo in t s [31, 2) ;

resul t .pose = pose-times-angle-frame-axis
in- jo in t s [41, Y) ;

resul t .pose = pose-times-angle-frame-axis
in- joints [51, 2) ;

/ * f ind conf igurat ion f l a g s * /
...

(r e s u l t .pose,

3 (result.pose,

(result.pose,

(r e s u l t .pose,

(result.pose,

Figure 2. Sun C code for forward kinematics.

4 August 1988 8

procedure Inverse -Kinematics
(Geometry: i n GEOMETRY-RECORD;
Pose : i n Poses.POSE;
Flags : i n CONFIG-FLAGS;
Old- Joint: i n JOINT-ARRAY;
Joint : i n out JOINT-ARRAY)

i s
use Trans la t ions.Car tes ian3, Rotat ions.Quaternions;

Rot-0-6 : Quaternion :=

Rotations.To - Quaternion (Pose.Rotation) .Quaternion;
-- r o t a t i o n pa r t o f T06.

Tran-0-6 : Car tes ian :=
Translations.To - Cartesian (Pose.Translat ion).Cartesian;
-- t r a n s l a t i o n p a r t o f T06.

X-1-6 : METERS; -- x component o f T16.
Tr ig- 0, Trig-1, Trig- 2 : TRIG-PAIR;
R-3-6 : QUATERNION; -- r o t a t i o n Component o f T36.

begin
JOINT-0-SOLUTION:
dec1ar e

begin
Denom : METERS-2 := Tran-0-6 (X) ** 2 + Tran-0-6 (Y) * * 2;

if Flags.Shoulder = RIGHTY
then

X-1-6 := - S q r t (Tran-0-6 (X) ** 2 + Tran-0-6 (Y) ** 2
- Geometry.Shoulder ** 2) ;

e l s e
X-1-6 := S q r t (Tran-0-6 (X) ** 2 + Tran-0-6 (Y) * * 2

- Geometry.Shoulder ** 2);
end if;

Trig - 0 := Make Trig- Pair ((Tran-0-6 (Y) * X-1-6
- Geometry.Shoulder * Tran-0-6 (X)) / Denom,

+ Geometry.Shoulder * Tran-0-6 (Y)) / Denom);
(Tran-0-6 (X) * X-1-6

Joint (0) := Atan2 (T r i g - 0) ;

except i o n

end JOINT-0-SOLUTION;
when NEGATIVE-SQUARE-ROOT => r a i s e INNER-REACH-LIMIT;

-- other j o i n t s
...

end Inverse -Kinematics;

Figure 3. Ada code for inverse kinematics, header and Joint 0..

4 August 1988 9

extern JOINT-STATUS inverse - kinematics (geometry, ingose - f lags,

GEOMETRY *geometry;
POSE-FLAGS ingose - flags;
JOINT-ARRAY old- jo ints ;
JOINT-ARRAY new- joints;
{

old- joints, new- joints)

auto
auto
auto
auto
auto
auto
auto

double
QUATERNION
CARTESIAN
double
TRIG-PAIR
J OINT-ARRAY
QUATERNI O N

wr is t - singular i ty - del ta = 2.OE-2;
rot-0-6; / * r o t a t i o n p a r t o f TO6 */
tran-0-6; / * t r a n s l a t i o n p a r t o f TO6 */
x-1-6 ; / * x component o f T16 * /
trig-0, trig-1, trig-2;
temp- joints;
r-3-6; / * r o t a t i o n component o f T36 * /

rot-0-6. s
rot-0-6. x
rot-0-6.y
rot-0-6. z

- ingose - f1ags.pose.quaternion.s;
= ingose - f1ags.pose.quaternion.x;
= ingose - f1ags.pose.quaternion.y;
= ingose - f1ags.pose.quaternion.z;

traz-0-6. x = ingose - flags. pose. Cartesian. x;
tran-0-6.y = ingose - f1ags.pose.cartesian.y;
tran-0-6.2 = ingose - f1ags.pose.cartesian.z;

/ * joint - 0- solut ion */
auto double denom-1 = sqr (tran-0-6.x) + sqr (tran-0-6.y) ;
auto double temp;

/ * check sign before ca l l i ng s q r t * /
temp = sqr (tran-0-6.x) + sqr (tran-0-6.y) - sqr (geometry ->shoulder);

i f (temp < 0.0) return INNER-REACH-LIMIT;

if(ingose - flags.flags.shou1der == RIGHTY)

e lse
X-1-6 = - sm-sqrt (temp) ;

x-1-6 = sm-sqrt (sqr (tran-0-6.x) + sqr (tran-0-6.y)
- sqr (geometry ->shoulder));

trig-0 = make - triggair ((tran- 0- 6.y * x-1-6- geometry ->shoulder * tran-0-6.x) / denom-1,
(tran-0-6.x * x-1-6

+ geometry ->shoulder * tran-0-6.y) / denom-1) ;

temp- joints 103 = atand2 (trig-0);
1
/ * other j o i n t s * /
...

Figure 4. Sun C code for inverse kinematics, header and joint 0.

4 August 1988 10

3.1. Abstraction

The= are some fairly obvious differences between the Ada and C versions. One i s that Ada
supports aggregates, and C does not, except for the initialization of static variables (DEC C
allows the initialization of automatic aggregate variables, Sun C does not). This makes the
code more abstract: the contents of an aggregate variable are treated as a unit, rather than
as discrete components. I t makes the code more readable, and less prone to minor typing
errors.

In the forward solution, the Ada version has a single assignment, with eight transforms

multiplied together. Th i s i s exactly the same as the abstract expression for'T6 . The C code

i s similar, but i t involves an explicit temporary variable, and function names other than "*".
The function names are rather long; obviously, abbreviations could be used. (They were not
here for clarity).

Note that the arguments to the Ada functions are aggregates, while the inputs to the C
functions are not. C does not have a construct similar to the Ada aggregate, as noted above.
Aggregates allow the Ada code to be more flexible; the inputs to the multiply functions can
be variables or aggregates; the inputs to the C functions can have only the form shown. A
different C function must be called if we wish to multiply a pose by a variable containing an
angle-frame-axis. For example, we would need:

function pose-times-angle_frame_axis_var(pose, angle-frame-axis)

function pose-times-angle-frame-axis-agg(pose, angle, frame-axis)

This i s a good example of abstraction; an angle-frame-axis i s an abstract entity, and in Ada
it i s handled in the same way whether i t i s a named variable or an aggregate of components,
but in C i t i s not.

Another difference in the forward solution i s in the choice of the rotation representation. The
C code always uses quaternions as intermediates, and a pose i s always expressed by a
quaternion rotation and a Cartesian translation. The input to the Ada I

r
*l
l function i s a record

with variant parts, one variant for each rotation (and translation) representation. Thus the
same function handlesallrepresentations. This i s why the case statement at the beginning
of the forward kinematics can determine the final representation; the "*" function uses
matrices if either of the inputs i s a matrix, and quaternions otherwise. This i s another
example of abstraction; some knowledge of which representation i s best i s encoded in the
"*" routine itself, and thus i s transparent to the user. If a particular routine i s passed a
matiix, it will use that representation, and if i t i s passed a quaternion, it will use that. I t
would be possible to do similar things in C, using unions. It would be less abstract, since C
does not support operator overloading and aggregates. In addition, the strong typing in Ada
makes debugging such code much simpler, debugging union structures in C i s difficult.

One final difference i s the use of exceptions in Ada. In the inverse kinematics, if the input
pose i s too close to the base, the robot cannot reachit.This shows up in the algorithm as a
square root with a negative argument. In Ada, we can let the exception mechanism deal with
this special case; here we convert the exception NEGATIVE-SQUARE-ROOT (defined in
my math package) to the exception INNER-REACH-LIMIT. In C, using exceptions makes
the high-level code operating system dependent, since the language does not define a

4 August 1988 11

standard interface to exceptions (see section 3.2.1 below). Instead, we explicitly check for a
negative argument, and return a status indicating the problem. The Ada code i s more
abstract; i t indicates that the negative square root i s a special case, and, since it propagates
an exception, i t forces the calling routine to handle the problem differently than a normal
r e m . In C, the calling routine must explicitly check the status, thus making all cases appear
of equal importance. Indeed, the calling routine can choose to ignore the status, resulting in
erroneous code. An Ada routine cannot ignore an exception.

3.2. Portability

The algorithms were first implemented in DEC Ada under W S . They were then re-
implemented in DEC C under VMS, then the Ada version was ported to Verdix Ada on a
Sun under UNIX, and the C version ported to Sun C under UNIX. Both the Ada port and the
C port had problems. After porting from DEC to Sun, the C code was ported back from Sun to
DEC, with far fewer problems. The problems fell into two categories; operating system
dependencies, and language implementation differences.

3.2.1. Operating system dependencies

The most basic problem was with the trig and square root math functions. Since these
functions are not standard in either Ada or Cy they had to be re-implemented to be ported. In
each case, they were implemented by importing a run-time library function supplied by the
operating system. V M S provides the functions MTH$SINCOSD (returns sin and cos of
argument in degrees), MTH$ATANDZ (returns angle in degrees whose sin and cos are
given), and MTHWQRT, all inF-FLOAT (32 bit). UNIX provides -sin, -cos, -atan2, using
radians, and-sqrt, allin 64 bit IEEE floating point. The VMS functions raise V M S conditions
when they detect errors (such as both arguments zero for atan2). The UNIX functions set an
error variable, but only if the 68881 co-processor error interrupt i s enabled. These operating
system differences cause different problems for Ada and C.

In Ada, the imported functions were hidden in a package body, and i t was fairly straight-
forward to edit that body. The exception handling i s not so easy. The V M S conditions can be
imported as Ada exceptions, via the DEC pragma IMPORT-EXCEPTION, which occurs in
the package specification. The UNIX error variable i s an external object, which must be
imported via the Verdix pragma IMPORT-OBJECT, which also occurs in the package
specification. Thus the specification of the math package changed, although in a minor way.
In testing, it was discovered that the 68881 error interrupt i s not normally enabled, so
explicit checks that raised the corresponding exceptions were used instead of theUMX error
handling.

In Verdix 5.5, a machine code math package was written, allowing single precision functions.
This package i s not portable to other machines, but i s appropriate for porting to 68881
systems without UNIX, although this portability was not tested.

In C, linking to the math functions was accomplished simply by calling the corresponding
linker name. Th i s name was easy to edit. Again, the exception handling caused more
problems. Under VMS, the LIB$ESTABLISH routine was used to establish an exception
handler for the math exceptions, in the inverse kinematics routine. Thus there i s operating

4 August 1988 12

system dependent code in the highest level routine. To avoid this, a different approach was
used under UNIX; a convention of returning a status was adopted, s imi lar to that in the C IO
functions. Th is was a significant modification to the inverse kinematics routine. It should be
noted, however, that when the resultant code was ported back to VMS, there wed no
problems in this area.

The test routines that verify the application code generate output files. Under VMS, each
new fi le receives a new version number, and the old one i s st i l l there. Under UNIX, there i s
no equivalent mechanism. The fmt timeIran the test routines,Iwiped out the filesIhad
intended to compare the results of the test with. This was more of a nuisance than a real
problem; Isimply had to rename files before running the test routines.

A more serious problem had to do with the size of Ada fi le the system could compile.
Especially when running suntools, the Sun system did not have as much ram available to the
compiler as the microVAX. In several cases, this caused the Ada compiler to abort the
compilation. Fortunately, it was easy to declare some function bodies to be separate, thus
reducing the size of each compilation. The C compiler had no similar problems.

3.2.2. Language implementation differences

The differences in the Ada implementations were allminor. Some of the differences in the C
implementations were more significant.

Both DEC and Verdix Ada had bugs in the TEXT-IO.ENUMERATION _IO package, when
doing GET from a string. T h i s function was used in reading data from the test files. The bugs
were different, requiring different work-arounds (fortunately not mutually exclusive).

DEC requires a.ada fi le suffix, while Verdix requires a .a suffix. Another nuisance - since
UNIX cannot rename a list of files, Ihad to write a short shell script.

The Verdix compiler encountered an internal error when compiling the Ada
inverse-kinematics routine. Simplifying an expression by using a temporary variable cured
the problem.

The syntax supported by the two C compilers i s significantly different in some areas,
particularly function declarations. DEC C allows declaring the type and name of each
parameter in an external function declaration. This makes the declaration more readable,
although i t i s not clear that the information i s used by the compiler. Sun C does not support
this syntax, soallthe function definitions had to be edited. Since the syntax did not serve a
real purpose in the DEC system, it was no real loss.

A more serious difference i s in the initialization of aggregate automatic variables. DEC C
supports such initialization, Sun does not, requiring a laborious sequence of assignments.

The Sun C compiler reported problems that the DEC C compiler didnot; some variables were
multiply defined, and an IO function used a single float format to read a double float.

In conclusion, both Ada and C are fairly portable. If care i s taken to avoid operating system
dependencies (using "plain vanilla" Ada or C, small enough files), both languages become
much more portable.

4 August 1988 13

3.3. Execution speed

Forward kinematics
compiler machine millisec

SMACRO 8086/8087 6.21

DECAda pVAXII
DECAda pVAXI I
DECAda pVAXII
DECAda pVAXII

DECAda pVAXII
DEC C pvAx n

Verdix 5.41 Sun 3/160
Verdix 5.41 Sun 3/160
Verdix 5.41 Sun 3/160
Verdix 5.41 Sun 3/160

9.87
8.06
6.11
4.90
4.68
3.69

12.60
11.40
8.06
7.81

Verdix 5.5 Sun 3/160 9.75
Verdix 5.5 Sun 3/160 8.97
Verdix 5.5 Sun 3/160 7.78
Verdix 5.5 Sun 3/160 7.46
Verdix 5.5 Sun 3/160 4.48
Verdix 5.5 Sun 3/160 4.36

relative meed. on each machine

-

0.82
1.00
1.32
1.64
1.72
2.18

1.oo
1.11
1.47
1.61

double precision
reference version
checks suppressed
low-level routines

checks suppressed, low-level routines

reference version
checks suppressed
low-level routines
checks suppressed, low-level routines

0.80 double precision
0.87 reference version (unix math)
1.oo reference version (machine-code math)
1.04 checks suppressed
1.74 low-level routines
1.78 checks suppressed, low-level routines

Sun C Sun 3/160 3.41 2.28

Figure Sa. Forward kinematics execution times.

Figure 5 gives the execution times for the various machine/compiler combinations. (Figure 5a
shows forward kinematics, 5b shows inverse). The times are grouped by machine (except for
Verdix 5.41), in order of increasing speed. The relative speed i s the ratio with the reference
Ada version on the same machine; thus DEC C i s 72 percent faster at forward kinematics
than DEC Ada, both running on a microVAX. Figure 6 gives an inter-machine comparison,
using the fastest Ada version for each machine. (The various Ada versions are discussed
below). Note that for Verdix 5.5, there are two versions of the math package; one importing
the UNIX calls, and one inmachine code. The machine code version was used forall tests
except the one labeled "unix math".

The 8086/8087 runs at 8 MHz. The Sun i s using a 68020 with a 68881, both at 16 MHz.
SMACRO times are measured with hardware timer accurate to - 10 microseconds. DEC
times are measured with VMS system timing routines, around a loop running 500 iterations.
The microVAX was not busy at the time of measurement (only one user logged in). Sun
times are measured using the UNIX hidtime facility, around a loop running 10,OOO iterations,
on a non-busy machine (no suntools, only one user). There i s no practical way to measure
the overhead on the Sun and VAX, so these times are probably a bit long.

4 August 1988 14

hverse kinematics
comDiler machine

SMACRO 8086/8087

DEC Ada
DEC -Ada
DEC Ada
DEC Ada
DEC Ada
DEC C

pvAxII
pvAxII
pvAxII
pvAxII
pvAxII
pvAxII

Verdix 5.41 Sun 3/160
Verdix 5.41 Sun 3/160
Verdix 5.41 Sun 3/160
Verdix 5.41 Sun 3/160

Verdix 5.5 Sun 3/160
Verdix 5.5 Sun 3/160
Verdix 5.5 Sun 3/160
Verdix 5.5 Sun 3/160
Verdix 5.5 Sun 3/160
Verdix 5.5 Sun 3/160

millisec

5.28

9.91
8.28
6.09
6.04
4.59
4.20

10.50
9.44
7.25
6.53

6.35
5.72
5.04
4.86
3.63
3.51

relative meed, on each machine

0.84
1.oo
1.36
1.37
1.80
1.97

1.oo
1.11
1.45
1.61

0.79
0.88
1.oo
1.04
1.39
1.44

double precision
reference version
low-level routines
checks suppressed
checks suppressed, low-level routines

reference version
checks suppressed
low-level routines
checks suppressed, low-level routines

double precision
reference version (unix math)
reference version (machine-code math)
checks suppressed
low-level routines
checks suppressed, low-level routines

Sun C Sun 3/160 3.20 1.58

Figure 5b. Inverse kinematics execution times.

compder machine mlhsec relaove speed

I Forward kinematics

Verdix 5.41 Sun 3/160 7.81
SMACRO 8086/8087 6.21
DEC C pVAXII 4.68
Verdix 5.5 Sun 3/160 4.36
DECAda pVAxII 3.69
Sun C Sun 3/160 3.41

I Inverse kinematics

0.80
1.oo
1.33
1.42
1.68
1.82

checks suppressed, low-level routines

checks suppressed, low-level routines
checks suppressed, low-level routines

Verdix 5.41 Sun 3/160 6.53 0.8 1 checks suppressed, low-level routines
SMACRO 8086/8087 5.28 1.oo
DECAda pVAXIl 4.59 1.15 checks suppressed, low-level routines
DEC C pVAX11 4.20 1.26
Verdix 5.5 Sun 3/160 3.51 1S O checks suppressed, low-level routines
Sun C Sun 3/160 3.20 1.65

~~ ~ ~ ~

Figure 6. Inter-machine comparison

4 August 1988 15

In order to evaluate the impact of various design decisions on execution speed, several
versions of the Ada code were timed. The changes affected timing in different amounts
between the two machines, and between the two procedures. The reference version uses the
code presented above, withallrun-time checks enabled, full compiler optimization, and
single precision (32 bit) floating point. In the f i rs t modification, allmn-time checks were
suppressed. This gained about 30% on the VAX, and 4% to 10% on the Sun. Apparently the
Verdix compiler i s either better at eliminating redundant checks in the reference version, or
the checks are faster.

For the second modification, the lowest level type declarations were changed to double
precision. Th i s lost about 17% on the VAX, and 15% on the Sun.

For the third modification, the code was made less abstract: the high-levelmultiply routines
were bypassed, calling the low-level routines directly. The resulting code i s closer to the C
version (see figure 7). Th is gained about 40% for inverse kinematics, and 64% for forward
kinematics, on both the VAX and the Sun. The reason this code i s faster i s that the high-
level routines must determine at run-time what representation i s used for the arguments.
This involves executing a nested case statement, and calling the appropriate low-level
routine. With checks left on, each call of a low-level routine also involves one or two
discriminant checks. All of this overhead i s bypassed when the low-level routines are called
directly. Since the reference version of the forward kinematics was coded more abstractly
than the inverse kinematics, i t gained more speed from being made less abstract.

Finlly, the first and third modifications were combined, (checks suppressed on low-level
code). Th is yielded better than a factor of two improvment in the DEC forward kinematics.

4 August 1988 16

procedure Forward -Kinematics (
Geometry : i n GEOMETRY-FlECORD;
Joint : i n J O I N T - W Y ;
Rot-Rep : in Rotations.ROT -REPS;
Pose : i n out Posea.POSE;
Flags : out CONFIG-FLAGS)

-- Find pose and f l a g s f r o m j o i n t s .
Tr ig - 0 : TRIG-PAIR := Sin-Cos (Joint (0)) ;

i s

begin
case Rot-Rep i s
when Rotations.MATRIX =>

-- find matrix pose

when others =>

dec1ar e
-- f ind quaternion pose

use Rotations.Quaternions, Rotations.?mgle -Frame-Axes,
Translations.Distance -Fraxne-Axes, Translations.Cartesians;

Rot : QUATERNION := To-Quaternion
(Rotations.Trig -Frame-Axes.To -Trig-Axis ((T r i g - 0 , 2))) ;

T r a n : CARTESIAN := Rotations.Trig -Frarne-Axes. "*" ((Tr ig - 0, 21,
DISTANCE-FRAME-AXIS' (Geometry. Shoulder, Y)) ;

begin
Rot := Rot * ANGLE-FRAME-AXIS'(Joint (I),Y) ;
Tran := Tran + Ro t * DISTANCE -FRAME-AXIS'(Geometry.Upper -Arm, Z) ;

Rot := Rot * ANGLE-FRAME-AXIS' (Joint (21, Y) ;
T r a n := Tran + Ro t * DISTANCE-FFUME-AXIS'(Geometry.Fore -Arm, 2) ;

Rot := Rot * ANGLE-FRAME-AXIS' (Jo in t (3) , 2)
* ANGLE-FRAME-AXIS' (Joint (41, Y)
* ANGLE FRAME-AXIS' (Joint (S) , 2) ;-

Pose := ((Ro ta t i ons .QUATERNION, R o t) ,
(Translations.CARTESIAN, T r a n)) ;

end;
end case;

-- compute f l a g s
end Forward Kinematics;

Figure 7. low-level Ada code for forward kinematics

To gain arough measure of how much overhead each language introduces, we estimate the
optimal computation t imes for each machine, assuming no overhead for function calls, loading
and storing operands, branching, etc. Th is will not give an accurate time estimate; the
overhead for the operations left out i s significant. However, the compiler i s free (to some

4 August 1988 17

extent) to optimize these overhead operations, but i t include the math operations.
Also, the count of these operations i s often used to give a measure of the complexity of an
algorithm; i t i s interesting to see how well this corresponds with actual execution time.
Figure 8 gives the number of clock cycles for each of the math operations for the 8087 and

ODeratlon 68881 808’/

atan: 25
sin-cos: 28
sqrt: 7
diV 6
mult : 4
add: 3
scale : 3

81
71
23
25
17
11
4

Figure 8. Execution times (micro-seconds) for various
operations

68881 (times for the microVAX were unavailable). The number of operations for the forward
kinematics is:

6 sin-cos, 1 sqrt , 76 mult, 43 add, 6 scale-by-2

and for the inverse kinematics:

6 atan2,6 div, 4 sqrt, 45 mult, 26 add, 6 scale-by-2.

Figure 9 shows the estimated optimal times, and the percent utilization for each
machine/compiler. The SMACRO code i s essentially hand optimized assembler, which
explains i t s high utilization. Verdix 5.41 achieves about half the utilization of Sun C, and
Verdix 5.5 i s almost as good as Sun C.A better measure of the efficiency of each compiler
would be to compare each with an implementation by an expert in assembler. This was not

4 August 1988 18

done, due to the amount of labor involved. Still, the current measure gives a fair ranking of
compilers on a particular machine.

C O ~ D Iler machine actual oDtimal utillzafion

Forward kinematics

Verdix 5.41 Sun 3/160
SMACRO 8086/8087
Verdix 5.5 Sun 3/160
Sun C Sun 3/160

Inverse kinematics

Verdix Ada Sun 3/160
SMACRO 8086/8087
Verdix 5.5 Sun 3/160
Sun C Sun 3/160

7.08
6.21
4.36
3.4 1

0.61
2.24
0.61
0.61

9 %
36 %
14 %
18 %

6.23 0.47 8 %
5.28 1.so 34 %
3.51 0.47 11 %
3.20 0.47 15 %

I

Figure 9. Actual and estimated optimal computation time
(milliseconds), andpercent utilization

4. Conclusions

The following sections discuss abstraction, portability, and speed. Recall that the task
involved in the study i s robot kinematics; th i s i s typical of tasks in the lower levels of the
NASREM hierarchy (PRIM and SERVO), but not of tasks in the higher levels. Inparticular,
at the higher levels, i t willbe more appropriate to use more abstract code, because the tasks
are more complex.

4.1. Abstraction

In summary, the Ada code i s somewhat closer to the user's view of the problem. Th i s was
more true for the forward kinematics than the inverse, andIbelieve that i t wil l be even more
true for higher level functions such as trajectory planning and object recognition. If the impact
of abstraction on execution time i s a concern, abstractions should be used for the prototype
code, during algorithm development. After the algorithm i s proven, i t can be speeded up by
bypassing the high-level, abstract calls, and calling the low-level functions directly. In th i s
way, low-level coding bugs are separated from high-level algorithm bugs, smoothing the
debugging process.

The features of Ada that provide abstraction are aggregates and overloading, and to some
extent strong typing and exception handling. Aggregates allow an abstract entity to be
expressed as a whole, rather than always as individual elements. In addition, arguments to
functions may be variables or aggregates, whereas in C two different functions must be
provided, or explicit temporary variables must be used.

4 August 1988 19

Overloading aids abstraction, since functions with simi lar meanings, but operating on
different types, can have the same names. For example, al l multiply routines can be named
n*11

Strong typing i s useful in debugging applications that use aggregates, particularly records
with variant parts. Ada checks that the referenced variant i s actually present, while C simply
assumes i t is. Once the code i s proven, this check can be turned off to increase speed.

Exception handling lets the unusual events be handled in a separate section of code, leaving
the main flow simpler.

4.2. Portability

The main conclusion to be drawn from the portability study i s that i t i s easier to write
portable code once i t has been ported. The port of C code from Sun to VAX was much easier
than the first port to Sun, simply because known problems were avoided in the f i rs t place.

Writing in Ada i s no guarantee of portability; there were just as many problems (although of
a different nature) with the Ada port as there were with the Cport. Again, once the potential
problems are known, i t i s easier to avoid them.

4.3. Timing

Currently, DEC Ada i s faster than DEC C for forward kinematics, DEC C i s faster for
inverse kinematics, and Sun C i s fastest overall. Th i s assumes we allow Ada to use single
precision.Ibelieve this i s justified: the SMACRO system has been running real robot
applications for years using single precision. If C were to be modified to allow single
precision, i t would become the clear speed leader.

An unsuccessful attempt was made to upgrade C to single precision on the VAX; the DEC C
compiler supports a single precision option. Unfortunately, this option does not go far enough:
arguments to functions are s t i l l passed as double, and since almost everything gets passed
to some function at some point, no real gain i s made. In addition, mixing single and double
proved to lead to lots of programming errors, which were very hard to debug. No simi lar
attempt was made for Sun C.

Using abstract code does incur a speed penalty. For time-critical code, this penalty can be
removed by first coding abstractly to prove the algorithm, then recoding the time-critical
parts less abstractly. Similarly, the run-time checks required by Ada can be lef t on during
debugging, and turned off for real execution.

4.4. Overall summary

On the whole, Ada was judged to be the best language for this application. The degree of
abstraction available made prototype debugging significantly easier, and the final speed was
adequate, particularly on DEC hardware. The Verdix compiler (and others) can be expected
to improve, as demonstrated by the signifcant improvement from Verdix 5.41 to 5.5.

4 August 1988 20

5. References

[Booch 861 Grady Booch, Software engineering with Ada, Second Edition. Benjamin /
Cummings, Menlo Park, California, 1986

[Craig 861 John J. Craig, Introduction toRobotics: Mechanics and Control, Addision -
Wesley, Reading, Massachusetts 1986

imaginaries in algebra", Philosophical Magazine xxv pp 10-13 (July 1844).
[Hamilton 18441 Si r William Rowen Hamilton, "On Quaternions; or on a new system of

[Kane 831

[NASREM 871

[Paul 811

[Purves 871

Thomas R. Kane, Peter W. Likins, David A. Levinson, Spucecraft
Dyruunics, McGraw -Hill Book Company, New York, 1983.

James S. Albus, Harry G. McCain, Ron Lumia, "NASA/NBS Standard
Reference Model for Telerobot Control Sytem Architecture (NASREM) ",
NASA Document SS-GSFC-0027, December 4,1986

Richard P. Paul, Robot Manipulators; Mathematics, Programming, and
Control, MlT Press, Cambridge, Massachusetts, 1981.

Lloyd Purves, "Telerobotic Services for the Space Station", Proceedings of
the 1987 IEEE International Conference on Robotics and Automation,
Raleigh, North Carolina, 1987.

4 August 1988 21

